Robert P. Crease, miembro del departamento de filosofía de la Universidad del Estado de Nueva York en Stony Brook e historiador del Laboratorio Nacional de Brookhaven, solicitó recientemente a varios físicos que seleccionaran los experimentos más bonitos de todos los tiempos. Basado en la publicación de George Johnson en el New York Times, listamos a continuación los 10 ganadores de esta encuesta acompañados de una pequeña explicación de los experimentos físicos y de una animación por computadora.
1. Difracción de electrones mediante doble rendija

Para explicar la idea, a los demás y a si mismos, los físicos usan frecuentemente un meditado experimento, en el cual se repitió el experimento previo de Young de la doble rendija usando esta vez un haz de electrones en lugar de un haz de luz. Cumpliendo con la leyes de la mecánica cuántica, el chorro de partículas se dividiría en dos, y los chorros más pequeños interferirían entre si, dejando el mismo patrón de luz-oscuridad que se obtuvo con el experimento de luz. Las partículas actuarían como ondas. De acuerdo con un artículo de la publicación "Physics World", del editor de la revista Peter Rodgers, no fue hasta 1961 cuando alguien (Claus Jönsson de Tübingen) llevó a cabo el experimento en el mundo real.
2. Experimento de Galileo sobre caída de objetos

Galileo Galilei, que poseía una cátedra en Matemáticas en la Universidad de Pisa, fue lo suficientemente descarado para cuestionarse el saber común. La historia se ha convertido en parte del folclore de la ciencia: el tiene fama de haber lanzado dos pesos distintos de la torre inclinada de la ciudad mostrando que ellos aterrizaban al mismo tiempo. Su reto a Aristóteles le costó a Galileo su trabajo, pero él había demostrado la importancia de considerar la naturaleza, no la autoridad humana, como juez final en materia de ciencia.
3. El experimento de la gota de aceite de Millikan

El experimento de la gota de aceite fue la primera medida directa y convincente de la carga eléctrica de un único electrón. Fue realizado originalmente en 1909 por el físico americano Robert A. Millikan. Usando un atomizador de perfume, él roció con minúsculas gotas de aceite un recipiente transparente. Arriba y abajo había discos metálicos conectados a una batería, siendo uno positivo (rojo en la animación) y el otro negativo (azul en la animación). Como cada gotita, adquirió una pequeña carga de electricidad estática cuando viajaba a través del aire, la velocidad de su movimiento podía ser controlada mediante el cambio del voltaje en los discos. Cuando el espacio entre los discos metálicos está ionizado por radiación (por ejemplo rayos X), los electrones del aire se enlazan a las gotitas de aceite dotándolas de carga negativa. Millikan observó una gota tras otra cambiando el voltaje y tomando nota del efecto. Tras muchas repeticiones concluyó que la carga sólo puede tener ciertos valores fijos. La más pequeña de esas porciones no fue otra que la carga de un único electrón.
4. Descomposición de la luz solar mediante un prisma de Newton

El saber común sostenía que la luz blanca era la forma más pura (otra vez Aristóteles) y que la luz coloreada tenía por tanto que ser alterada de alguna forma. Para probar esta hipótesis, Newton dirigió un haz de luz solar a través de un prisma de cristal y mostró que esta se descomponía en un fundido espectral sobre la pared. La gente ya conocía los arcos iris, por supuesto, pero eran considerados sólo como preciosas aberraciones. En realidad, Newton concluyó, que eran esos colores - rojo, naranja, amarillo, verde, azul, añil, violeta y las graduaciones intermedias - los que eran fundamentales. Lo que parecía simple en su superficie, un haz de luz blanca, era bellamente complejo si uno lo miraba más detenidamente.
5. Experimento de Young de la interferencia de luz

La demostración fue repetida frecuentemente a lo largo de los años usando una carta con dos agujeros que dividía el haz. Esos experimentos, llamados de doble rendija, se convirtieron en el estándar para determinar la naturaleza ondulatoria - un hecho que fue especialmente importante un siglo después cuando comenzó la teoría cuántica.
6. El experimento de torsión de la barra de Cavendish

7. Medida de la circunferencia terrestre por Eratóstenes

Asumió que la distancia al Sol era muy grande; sus rayos por tanto son prácticamente paralelos cuando alcanzan la Tierra. Dadas las distancias estimadas entre las dos ciudades, él fue capaz de calcular la circunferencia de la Tierra. La longitud exacta de las unidades (stadia) que usó son dudosas, y la precisión de sus resultados es por tanto incierta; Eratóstenes podría haber variado entre un 0.5 y un 17 por ciento del valor aceptado por los astrónomos modernos.
8. Experimento de Galileo con bolas rodantes sobre planos inclinados

Aristóteles habría predicho que la velocidad de una bola rodante sería constante: si doblamos el tiempo de descenso, doblaremos la distancia que recorre. Galileo fue capaz de demostrar que la distancia es en realidad proporcional al cuadrado del tiempo: dóblalo y la bola llegará cuatro veces más lejos. La razón es que está constantemente acelerado por la gravedad.
9. El descubrimiento del núcleo de Rutherford

Rutheford calculó que en realidad los átomos no estaban tan triturados después de todo. La mayoría de la masa tenía que estar concentrada en un pequeño núcleo, ahora llamado así, con los electrones flotando a su alrededor. Con las enmiendas ofrecidas por la teoría cuántica, esta imagen del átomo permanece hasta hoy.
10. El péndulo de Foucault

La audiencia observó con pavor como el péndulo inexplicablemente parecía rotar, dejando un trazo ligeramente distinto en cada balanceo. En realidad era el suelo del Panteón el que estaba ligeramente en movimiento, y Foucault había demostrado, de una forma más convincente que nunca, que la tierra gira sobre su eje. En la latitud de París, el trazo del péndulo completaría una rotación completa en el sentido horario cada 30 horas; en el hemisferio sur rotaría en sentido antihorario, y en el ecuador no rotaría nada. En el Polo Sur, como han confirmado los científicos de la era moderna, el periodo de rotación es de 24 horas.
Fuente: http://physics.nad.ru/Physics/English/top10.htm
Saludos. Hay un péndulo de estas características en Valencia en la ciudad de las ciencias. Allí hay uno bolos en pié que van siendo derribados por el movimiento del péndulo. También hay otro en la Universidad de Jaén. De todos ellos hice unas grabaciones en video con mi teléfono. Creo que en Granada hay otro en la ciudad de las ciencias.
ResponderEliminar